
LABi: Laboratory for Advanced Biomedical Informatics
Louisiana State University, Shreveport, LA 71115

labi.cs.lsus.edu .:. info@labi.cs.lsus.edu

Processing Text with sed

Dr. Marjan Trutschl
marjan.trutschl@lsus.edu

Topics

•  Getting an installing sed
•  Methods of invoking sed
•  Selecting lines to operate on
•  Performing substitutions with sed
•  Advanced sed invocation
•  Advanced addressing
•  Common one-line sed scripts

Introducing Sed

•  It is a non-interactive stream editor designed by the
late Lee E. McMahon in 1973 or 1974

•  Sed is shell independent i.e. it works with whatever
shell you want to use it with.

•  Instead of altering a file interactively by moving the
cursor on the screen (as with a word processor),
the user sends a script of editing instructions to
sed, plus the name of the file to edit (or the text to
be edited may come as output from a pipe).

Introducing Sed

•  In this sense, sed works like a filter -- deleting,
inserting and changing characters, words, and lines
of text. Its range of activity goes from small, simple
changes to very complex ones.

•  Most people use sed for its substitution features.
•  Sed is often used as a find-and-replace tool.

Sed Versions
•  It comes standard with nearly every Unix that

exists, including Linux and Mac OS X.
•  It is an essential shell command and generally does

not need to be installed.
•  There are free versions, shareware versions and

commercial versions.
•  The most common version is arguably GNU sed.

For current version, type: sed --version
•  The GNU sed has a number of extensions that the

POSIX sed does not have. GNU vs. POSIX (LTR)

Sed Versions

•  BSD implementations offer extensions that support
the Japanese language.

•  ssed (super sed) has more features than GNU sed
and is based on the GNU sed code-base.

•  Sed is generally found at /bin/sed or /usr/bin/sed

Sed Versions

•  To find out what version you have on your sytem,
type the following command
$ sed --version <Enter>

GNU sed version 4.1.4
Copyright (C) 2003 Free Software Foundation, Inc.

This is free software; see the source for copying
conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE,

to the extent permitted by law.

Installing Sed

•  If you don’t have a version of sed installed, get a
version targeted for your OS

•  Mac OS X comes with a BSD version of sed, but
you can easily install the GNU version through fink
(http://fink.sourceforge.net)

•  On Debian GNU/Linux you can install sed as root
by typing
apt-get install sed

Bootstrap Installation

•  If you are building sed on a system that has no
preexisting version of sed, you need to follow a
bootstrap procedure outlined in README.boot

•  NOTE: If you have the BSD version, you can
directly jump to configuring and installing sed

•  To bootstrap the building of sed, you run the shell
script bootstrap.sh
$ sh ./bootstrap.sh

Bootstrap Installation

•  If you get errors and the bootstrap version of sed
fails to build, you will need to edit the config.h
header file that was created for your system.

•  Once the build is completed, copy the sed binary
that was built in the sed directory to somewhere in
your $PATH.

Configuring and Installing sed

•  Please go thought text and commands in text book
on page 193

$ sh ./configure

$ make
$ su

How sed Works

•  Sed reads its input from stdin (Unix shorthand for
"standard input," i.e., the console) or from files (or
both), and sends the results to stdout ("standard
output," normally the console or screen)

•  You can also redirect this output to a file.
•  Sed doesn’t typically modify an original input file,

instead you send the contents of your file through a
pipe to be processed by sed.

Invoking Sed

•  Before you can get started with any of the
examples, you will need some data to work with.

•  The /etc/passwd file, contains some useful data to
parse with sed. Everyone may have a slightly
different file, so results may vary.

•  Sed can be invoked by sending data through a pipe
to it. Try the following command at the prompt

$ cat /etc/passwd | sed <Enter>

Invoking Sed
•  This command dumps the contents of the /etc/

passwd to sed through the pipe into sed’s pattern
space.

•  The “pattern space” is the internal work buffer that
sed uses to do its work.

•  Sed expects to always do something with its pattern
space, and if you don’t tell it what to do, it
considers that an invocation error.

•  The previous command was incorrectly invoked so
we got sed’s command usage as an output.

NOTE

•  Create a file ‘sedfile’ for all examples in the book.
So instead of using the file /etc/passwd, use sedfile.
The following is the content of the sedfile.

1 -- This is line 1

2 -- This is line 2

3 -- This is line 3

4 -- This is line 4

5 -- This is line 5

6 -- This is line 6

7 -- This is line 7

8 -- This is line 8

9 -- This is line 9

10 -- This is line 10

Editing Commands
•  Sed expects an editing command, i.e. what you

want sed to do to the data in the pattern space.
•  Try the following at the prompt, which deletes all

lines with sed
$ cat sedfile | sed ‘d’ <Enter>

•  It didn’t print anything at all…this is because sed
read the first line from sedfile into its pattern buffer.
It then performed the delete line editing command
on the contents of its pattern buffer and then printed
out the pattern buffer.

Editing Commands

•  Because the command deleted the line, the pattern
buffer was empty and so nothing got printed out.

•  Sed then repeats the process until it reaches the
end of the file.

•  NOTE: The original sedfile file is not altered.

Invoking sed with the –e flag

•  Try the command at the prompt
$ sed –e ‘d’ sedfile <Enter>

$

•  It does the same as the previous command
•  Invoking sed in this manner explicitly defines the

editing command as a sed script to be executed on
the input file sedfile.

•  The script is simply a one-character editing
command in this case.

Redirection

•  Output from sed is to the standard output, but you
can redirect it to an output file.

•  You will have to use shell’s I/O redirection
capabilities to send standard output to a file. Use
the operator ‘>’ to redirect your output as in:

$ sed –e ‘d’ sedfile > /tmp/new sedfile <Enter>

$ sed –e ‘d’ sedfile > /tmp/new\ sedfile <Enter>

$ sed –e ‘d’ sedfile > “/tmp/new sedfile” <Enter>

•  Because this command deletes all lines, this results
in an empty output file.

The –n, --quiet and --silent Flags

•  By default, sed prints out the pattern space at the
end of processing its editing commands and then
repeats that process.

•  The –n flag disables this automatic printing so that
sed will instead print lines only when it is explicitly
told to do so with the ‘p’ command.

•  The ‘p’ command simply means to print the
pattern space.

The –n, --quiet and --silent Flags
•  The ‘p’ flag is generally used only in conjunction

with the ‘-n’ flag; otherwise you will end up printing
the pattern space twice.

•  Try the following commands at the prompt
$ cat sedfile | sed ‘p’ | head -10 <Enter>
$ cat sedfile | sed –n ‘p’ | head -10 <Enter>

•  The first command will print the pattern space twice
i.e. you will have duplicate lines, while the second
command will print it just once.

•  See the output on the next slide.

The –n, --quiet and --silent Flags
$ cat sedfile | sed 'p' | head -10
1 -- This is line 1
1 -- This is line 1
2 -- This is line 2
2 -- This is line 2
3 -- This is line 3
3 -- This is line 3
4 -- This is line 4
4 -- This is line 4
5 -- This is line 5
5 -- This is line 5

The –n, --quiet and --silent Flags
$ cat sedfile | sed -n 'p' | head -10
1 -- This is line 1
2 -- This is line 2
3 -- This is line 3
4 -- This is line 4
5 -- This is line 5
6 -- This is line 6
7 -- This is line 7
8 -- This is line 8
9 -- This is line 9
10 -- This is line 10$

Sed Errors

•  It is easy to incorrectly specify your sed editing
commands, as the syntax requires attention to
detail.

•  If you miss one character, you can produce vastly
different results than expected, or find yourself
faced with a rather cryptic error message

•  Sed is not friendly with its error messages

Selecting Lines to Operate On

•  Sed understands something called ‘addresses’.
•  Addresses are either particular locations in a file or

a range where a particular editing command should
be applied.

•  When sed encounters no addresses, it performs its
operations on every line in the file.

•  The following command adds a basic address to
the sed command

$ cat sedfile | sed ‘1d’ | more <Enter>

Selecting Lines to Operate On
$ cat sedfile | sed ‘1d’ <Enter>
2 -- This is line 2

3 -- This is line 3

4 -- This is line 4

5 -- This is line 5

6 -- This is line 6

7 -- This is line 7

8 -- This is line 8

9 -- This is line 9

Selecting Lines to Operate On

•  The number 1 before the delete edit command tells
sed to perform the editting command on the first
line of the file.

•  So, in the above example, sed will delete the first
line of the file and print the rest.

•  ‘more’ will just print the output, one page at a time

Address Ranges

•  If you want to remove more than one line, you can
use address ranges, as in:

$ cat sedfile | sed ‘1,5d’ <Enter>

6 -- This is line 6
7 -- This is line 7

8 -- This is line 8

9 -- This is line 9

10 -- This is line 10

•  In the above examples sed, deletes the lines 1
through 5 (1 and 5 inclusive)

Address Ranges

•  If you use reverse address ranges as in:
$ cat sedfile | sed ‘10,4d’ <Enter>

•  In the above example because you’ve told sed to
start deleting from line 10, it reads in line 10,
deletes it and then looks for the range 9-4 to delete.

•  However, it won’t see those lines after it has
reached line 10.

•  Sed does not back up in its processing to look for
those lines, so line 10 is deleted, but nothing else.

Address Ranges

•  If you forget to complete your address range, you
will receive an error message from sed, which may
not be very helpful e.g.

$ cat /etc/passwd | sed '1,d‘ <Enter>

sed: -e expression #1, char 3: unexpected `,'

Address Ranges

•  If you want to match line 4 and the five lines
following line 4, you append a plus sign before the
second address number

$ cat sedfile | sed ‘4,+5d‘ <Enter>

•  This will match line 4 in the file, delete that line,
continue to delete the next five lines, and then
cease its deletion and print the rest.

•  Output on next page

Address Ranges
$ cat sedfile | sed '4,+5d‘ <Enter>
1 -- This is line 1

2 -- This is line 2

3 -- This is line 3

10 -- This is line 10

Address Negation

•  You can negate an address match by appending an
exclamation mark at the end of any address
specification.

•  So, only those lines that do not match the address
match will be matched.

•  The following 2 slides list 2 examples with their
respective outputs

Example: Address Negation
$ cat /etc/passwd | sed '1,5!d‘ <Enter>
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/bin/bash
daemon:x:2:2:Daemon:/sbin:/bin/bash
lp:x:4:7:Printing daemon:/var/spool/lpd:/bin/bash
mail:x:8:12:Mailer daemon:/var/spool/clientmqueue:/bin/false

•  Here sed matches everything except the first five
lines and performs the deletion.

Example: Address Negation
$ cat /etc/passwd | sed '1,10!d'
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/bin/bash
daemon:x:2:2:Daemon:/sbin:/bin/bash
lp:x:4:7:Printing daemon:/var/spool/lpd:/bin/bash
mail:x:8:12:Mailer daemon:/var/spool/clientmqueue:/bin/false
news:x:9:13:News system:/etc/news:/bin/bash
uucp:x:10:14:Unix-to-Unix CoPy system:/etc/uucp:/bin/bash
games:x:12:100:Games account:/var/games:/bin/bash
man:x:13:62:Manual pages viewer:/var/cache/man:/bin/bash
at:x:25:25:Batch jobs daemon:/var/spool/atjobs:/bin/bash

•  Here sed matches everything except the first ten
lines and performs the deletion.

Address Steps

•  This allows you to do things such as selecting every
odd line, 3rd line, 5th line etc.

•  You use a tilde (~) to specify address steps.
$ cat sedfile | sed ‘1~3d’

•  This deletes the first line, steps over the next two
lines, and then deletes the fourth line. Sed
continues this pattern till it reaches the end of the
file.

•  Output on next slide.

Address Steps
$ cat sedfile | sed '1~3d'

2 -- This is line 2
3 -- This is line 3

5 -- This is line 5

6 -- This is line 6

8 -- This is line 8

9 -- This is line 9

Address Steps
$ cat sedfile | sed ‘1~1d’ <Enter>

•  This tells sed to delete all lines.

$ cat sedfile | sed ‘2~2d’ <Enter>

•  This tells sed to delete the second line, step over
the next line, delete the next line and repeat until
end of file is reached.

Substitution

•  The substitution command, denoted by s, will
substitute any string that you specify with any other
string that you specify.

•  To substitute one string with another, you need to
tell sed, where the 1st string ends and where the 2nd
begins.

•  This is done with the forward slash (/) character.
•  The command substitutes only the first occurrence

of the string on every line.

Example: Substitution
$ cat sedfile | sed 's/1/one/‘ <Enter>
one -- This is line 1
2 -- This is line 2
3 -- This is line 3
4 -- This is line 4
5 -- This is line 5
6 -- This is line 6
7 -- This is line 7
8 -- This is line 8
9 -- This is line 9
one0 -- This is line 10

Example: Substitution

•  If you want to substitute every occurrence of the
string on every line, do a global substitution. Add
the letter ‘g’ to the end of the command.
$ cat sedfile | sed 's/1/one/g‘ <Enter>

one -- This is line one

2 -- This is line 2

3 -- This is line 3

4 -- This is line 4

5 -- This is line 5

6 -- This is line 6

7 -- This is line 7

8 -- This is line 8

9 -- This is line 9

one0 -- This is line one0

Substitution Flags

Flag Meaning

g Replace all matches, not just the first match

NUMBER Replace only the NUMBERth match

p If substitution was made, print pattern space

w FILENAME If substitution was made, write result to FILENAME. GNU sed
additionally allows writing to /dev/stderr and /dev/stdout

I or i Match in a case-insensitive manner

M or m In addition to the normal behavior of the special regular
expression characters ^ and $, this flag causes ^ to match the
empty string after a newline and $ to match the empty string
before a newline.

Example: Substitution

•  If you specify any number as a flag (NUMBER flag),
this tells sed to act on the instance of the string that
matched that number.
$ cat /etc/passwd | sed 's/root/toor/3' | head -2 <Enter>

root:x:0:0:root:/toor:/bin/bash

bin:x:1:1:bin:/bin:/bin/bash

•  The /etc/passwd file has 3 instances of ‘root’ in the
first line, so the above command replaces only the
3rd match on

Using an Alternative String Separator

•  If you have to do a substitution on a string that
includes the forward slash character, specify a
different separator by providing the designated
character after the ‘s’.

$ cat /etc/passwd | sed 's:/root:/toor:' | head -2 <Enter>

root:x:0:0:root:/toor:/bin/bash

bin:x:1:1:bin:/bin:/bin/bash

•  In the above example we have changed the home
directory of the root user from ‘/root’ to ‘/toor’. To
do this we used a colon (:) as a separator.

Using an Alternative String Separator

•  If you find yourself in a situation where you do need
to use the string separator, you can do so by
escaping the character.

$ cat /etc/passwd | sed 's/\/root/\/toor/' | head -2 <Enter>

root:x:0:0:root:/toor:/bin/bash

bin:x:1:1:bin:/bin:/bin/bash

$ cat /etc/passwd | sed 's/:root/:absolutely power corrupts/g'
| head -2 <Enter>

root:x:0:0:absolutely power corrupts:/root:/bin/bash

bin:x:1:1:bin:/bin:/bin/bash

Replacing with Empty Spaces

•  Use an empty substitution string to delete the root
string from the /etc/passwd file entirely.

$ cat /etc/passwd | sed 's/root//g' | head -2 <Enter>

:x:0:0::/:/bin/bash

bin:x:1:1:bin:/bin:/bin/bash

•  The ‘s/root//g’ tells sed to replace all instances of
root with the empty replacement string that follows
the separator.

Address Substitution
•  It is possible to perform substitution only on specific lines or

on a specific range of lines if you specify an address or an
address range to the command.

$ cat /etc/passwd | sed '10s/sh/quiet/g' | head -10 <Enter>

root:x:0:0:root:/root:/bin/bash

bin:x:1:1:bin:/bin:/bin/bash

daemon:x:2:2:Daemon:/sbin:/bin/bash

lp:x:4:7:Printing daemon:/var/spool/lpd:/bin/bash

mail:x:8:12:Mailer daemon:/var/spool/clientmqueue:/bin/false

news:x:9:13:News system:/etc/news:/bin/bash

uucp:x:10:14:Unix-to-Unix CoPy system:/etc/uucp:/bin/bash

games:x:12:100:Games account:/var/games:/bin/bash

man:x:13:62:Manual pages viewer:/var/cache/man:/bin/bash

at:x:25:25:Batch jobs daemon:/var/spool/atjobs:/bin/baquiet

Address Substitution

•  In the previous example, notice the string ‘baquiet’
on line 10. i.e. ‘bash’ is now ‘baquiet’ after the
substitution.

•  To do an address range, try the following
$ cat /etc/passwd | sed '1,5s/sh/quiet/g' | head -6 <Enter>

root:x:0:0:root:/root:/bin/baquiet

bin:x:1:1:bin:/bin:/bin/baquiet

daemon:x:2:2:Daemon:/sbin:/bin/baquiet

lp:x:4:7:Printing daemon:/var/spool/lpd:/bin/baquiet

mail:x:8:12:Mailer daemon:/var/spool/clientmqueue:/bin/false

news:x:9:13:News system:/etc/news:/bin/bash

Advanced sed Invocation
•  You can specify multiple editing commands on the

command line in three different ways.
•  Create a file stream.txt containing the following text

Imagine a quaint bubbling stream of cool mountain water filled
with rainbow trout and elephants drinking iced tea.

•  The first way, to specify multiple editing commands,
on the command line, is to separate them by a
semicolon.

$ cat stream.txt | sed 's/trout/catfish/; s/ and elephants//‘
<Enter>

Imagine a quaint bubbling stream of cool mountain water filled
with rainbow catfish drinking iced tea.

Advanced sed Invocation

•  The second way to specify multiple editing
commands, on the command line is to specify
multiple –e arguments.

•  The following example (with output) will show how.
$ cat stream.txt | sed -e 's/trout/catfish/' -e 's/ and
elephants//‘ <Enter>

Imagine a quaint bubbling stream of cool mountain water

filled with rainbow catfish drinking iced tea.

Advanced sed Invocation

•  The third way to specify multiple editing commands,
on the command line is to use the multiline
capability of the bash shell

•  The following examples (with output) will show how.
$ cat stream.txt | sed ‘ <Enter>

> s/trout/catfish/ <Enter>
> s/ and elephants//‘ <Enter>

Imagine a quaint bubbling stream of cool mountain water

filled with rainbow catfish drinking iced tea.

Advanced sed Invocation

•  In the previous command, bash knows when you
have not terminated a single quote and prompts
you for more input until you enter the completing
single quote.

Sed scripts

•  Create a text file called water.sed containing the
following text/commands

s/trout/catfish/

s/ and elephants//

•  The file contains 2 editing commands.
•  To specify the file containing the editing commands

you want sed to perform, pass the ‘-f’ flag followed
by the filename containing the editing commands.

•  The example on the next slide shows how.

Sed scripts

•  We execute the commands using the stream.txt file
$ sed -f water.sed stream.txt

Imagine a quaint bubbling stream of cool mountain water

filled with rainbow catfish drinking iced tea.

The Comment Command

•  To add a comment in a sed script, simply precede
the line with the pound (#) character.

•  The comment continues till the next newline.
•  There are 2 caveats with the comment command

–  Comments are not portable to non-POSIX versions of
sed

–  If the first two characters of your script are #n, the –n (no
auto-print) option is automatically enabled. In this case,
either use ‘N’ or place a space between the # and ‘n’

The Insert, Append and Change Commands

•  Insert (i) outputs the text immediately, before the
next command

•  Append (a) outputs the text immediately afterward.
•  In the next example, we convert a text file to an

HTML file. Using ‘i’ and ‘a’ you can create a
simple sed file that will add the opening and closing
tags to any text file.

Example: Insert, Append Commands

•  Save the following in a file named txt2html.sed
#!/bin/sed -f

1 i\
<html>\
<head><title>Converted with sed</title></head>\
<body bgcolor="#ffffff">\
<pre>\

$ a\
</pre>\
</body>\
</html>

Example: Output

•  Take stream.txt and run it through the sed script.
$ cat stream.txt | sed -f txt2html.sed <Enter>
<html>
<head><title>Converted with sed</title></head>
<body bgcolor="#ffffff">
<pre>

Imagine a quaint bubbling stream of cool mountain water
filled with rainbow trout and elephants drinking iced
tea.
</pre>
</body>
</html>

Example: Output Explanation

•  Sed inserted, starting at line 1, the four opening
HTML tags that indicate that the file is HTML.

•  Then it printed the text file
•  At the end of the file (denoted by the $), sed

appended the closing HTML tags

The Change Command

•  The change (c) command replace the current line in
the pattern space with the text that you specify.

•  The difference between the substitute (s) and
change (c) commands is that ‘s’ works on a
character-by-character basis, whereas the ‘c’
changes the entire line.

•  In the example, change ‘water.sed’ to the
following and name the file ‘noelephants.sed’
s/trout/catfish/
/ and elephants/ c\Although you can substitute trout with
catfish, there is no substitute for elephants, so we
cannot offer this item

Example: The Change Command

•  Take stream.txt and run it through
noelephants.sed
$ cat stream.txt | sed -f noelephants.sed
Imagine a quaint bubbling stream of cool mountain water filled
Although you can substitute trout with catfish, there is no substitute for elephants,

<CONT>so we cannot offer this item.

Regular Expression Addresses

•  When addresses are specified as in the previous
examples, the editing command affects only the
line(s) that you explicitly denoted in the address.

•  Since it is not possible for you to know where in
your file you want to perform sed operations, sed
allows you to use regular expressions (regexps) to
make your addressing much more powerful and
useful.

Regular Expression Addresses
$ cat /etc/sysconfig/syslog
Path: System/Logging
Description: System logging
Type: list(0,1,2,3,4,5,6,7)
Default: 1
Config: "“
ServiceRestart: syslog

Default loglevel for klogd

KERNEL_LOGLEVEL=1

Type: string
Default: ""
Config: ""
ServiceRestart: syslog

if not empty: parameters for syslogd
for example SYSLOGD_PARAMS="-r -s my.dom.ain"

SYSLOGD_PARAMS=""
<CUT… Partial file>

Regular Expression Addresses
mtrutschl@sun> cat /etc/sysconfig/syslog | sed '/^#/d'
KERNEL_LOGLEVEL=1

SYSLOGD_PARAMS=""

KLOGD_PARAMS="-x"

SYSLOG_DAEMON="syslog-ng"

SYSLOG_NG_CREATE_CONFIG="yes"

SYSLOG_NG_PARAMS=""
SYSLOGD_ADDITIONAL_SOCKET_NAMED="/var/lib/named/dev/log"

SYSLOGD_ADDITIONAL_SOCKET_NTP="/var/lib/ntp/dev/log"
mtrutschl@sun>

•  The regular expression /^#/ removes all the
comments.

•  The blank lines are also printed.

Inverted Regular Expression Match
$ cat /etc/sysconfig/syslog | sed -n '/^#/p‘ <Enter>

•  The command prints to your screen all the
comments in the syslog file and nothing else

Regular Expression

•  The regular expression table lists four special
characters that are very useful in regular
expressions.

Character Description
^ Matches the beginning of lines

$ Matches the end of lines

. Matches any single character

* Matches zero or more occurrences of the
previous character.

Regular Expressions
$ cat foo.txt | sed '/^$/d‘ <Enter>
foo.txt Demo file

For more information see…

First some standard logfiles. Log by facility.

auth,authpriv.* /var/log/auth.log

•  ^ matches the beginning of the line
•  $ matches the end of lines
•  The combination matches and deletes all lines that

have nothing between the beginning and end of the
line.

Regular Expressions
$ cat foo.txt | sed -n '/^[abc]/p'
auth,authpriv.* /var/log/auth.log

•  This combines the regular expression ^ with the
regular expression [abc] to print only those lines
that begin with any one of those characters.

•  The [] brackets denote a range of characters.
•  [g-t] would get you all lowercase characters

between g and t.
•  [3-25] would get you all numbers between 3 and 25.

Character Class Keywords
Character Class Keyword Description
[[:alnum:]] Alphanumeric [a-z A-Z 0-9]
[[:alpha:]] Alphabetic [a-z A-Z]
[[:blank:]] Blank characters (space or tabs)
[[:cntrl:]] Control characters
[[:digit:]] Numbers [0-9]
[[:graph:]] Any visible characters (excludes whitespaces)
[[:lower:]] Lowercase letters [a-z]
[[:print:]] Printable characters (noncontrol characters)
[[:punct:]] Punctuation characters
[[:space:]] Whitespace
[[:upper:]] Uppercase letters [A-Z]
[[:xdigit:]] Hex digits [0-9 a-f A-F]

Character Class Keywords
$ cat syslog.conf | sed -n '/^[[:alpha:]]/p' <Enter>
auth,authpriv.* /var/log/auth.log

•  This command prints only those lines in the
syslog.conf file that start with a letter of the
alphabet.

Character Class Keywords
$ cat foo.txt | sed '/^[[:alpha:]]/d‘ <Enter>
foo.txt Sample file…

For more information see…

First some standard logfiles. Log by facility.

•  This command deletes all lines in the foo.txt file that
start with a letter of the alphabet

Combining Line Addresses with regexps
$ cat foo.txt | sed '1,/^$/d‘ <Enter>
First some standard logfiles. Log by facility.

auth,authpriv.* /var/log/auth.log

•  This command starts deleting from the first line in
the file and continues to delete up to the first line
that is blank.

Advanced Substitution
$ cat stream.txt | sed 's/trout/catfish/g'
Imagine a quaint bubbling stream of cool mountain water filled

with rainbow catfish and elephants drinking iced tea.

•  To do regular expression substitutions, you simply
map a regular expression onto the literal string.

sed ‘s/^$/<p>/g’

•  The first part of the substitution looks for blank lines
and replaces them with the HTML <p> paragraph
marker.

Referencing Matched regexps with &

•  The sed metacharacter ‘&’ represents the contents
of the pattern that was matched.

•  If you have the file phonenums.txt with the following
data

5555551212
5555551213
5555551214
6665551215
6665551216

7775551217

Regular Expression Address Ranges

•  You want to surround the area code with
parentheses, for easier reading.

•  To do this you can use the ampersand (&)
replacement character.

$ sed -e 's/^[0-9][0-9][0-9]/(&)/g' phonenums.txt <ENT>

(555)5551212
(555)5551213

(555)5551214

(666)5551215

(666)5551216

(777)5551217

Regular Expression Address Ranges

•  Another way of getting the same output as the
previous slide…

$ sed -e 's/^[[:digit:]] [[:digit:]] [[:digit:]]/(&)/g'
phonenums.txt <Enter>

(555)5551212

(555)5551213

(555)5551214

(666)5551215

(666)5551216

(777)5551217

Regular Expression Address Ranges

•  What does this statement do?

$ sed -e 's/[0-9][0-9][0-9][0-9][0-9][0-9]/&-/g'
phonenums.txt | sed -e 's/^[0-9][0-9][0-9]/(&)/g‘

Note that this is one long line.

Back References

•  To do back references, you have to first define a
region and then refer back to that region.

•  To define a region, you insert backslashed
parentheses around each region of interest.

•  The first region that you surround with backslashes
is then referenced by \1, the second \2 and so on.

•  Using phonenums.txt, create a file nums.txt, so that
the area code is in parentheses and there is a
hyphen after the 6th digit in the phone number.

Back References
 $ sed -e 's/^[0-9]\{3\}/(&)/g' -e 's/)[0-9]\{3\}/&-/g'
phonenums.txt > nums.txt <Enter>

 ‘or’

 $ sed -e 's/^[[:digit:]]\{3\}/(&)/g' -e 's/)[[:digit:]]
\{3\}/&-/g' phonenums.txt > nums1.txt <Enter>

 $ cat nums.txt <Enter>

 (555)555-1212

 (555)555-1213

 (555)555-1214

 (666)555-1215

 (666)555-1216

 (777)555-1217

Back References

•  First define the three regions in the left side of the
sed command. i.e. the area code, the second set of
numbers up to the dash, and the rest of the
numbers.

•  To select the area code, define a regular expression
that includes parentheses. /.*)/

•  This matches any number up to a ‘)’.
•  If you want to reference this match later, you need

to enclose the expression in escaped parentheses.

Back References
/\(.*)\)/

•  This matches any number of characters up to a ‘)’.
•  If you want to reference this match later, you need

to enclose the expression in escaped parentheses.
•  Now, you want to match the second set of numbers,

terminated by a hyphen,
/\(.*-\)/

•  The third set is specified by matching any character
repeating up to the end of the line.

Back References
/\(.*$\)/

•  Now we can put it all together in a search and then
use the references in the replacement right side.

$ cat nums.txt | sed 's/\(.*)\)\(.*-\)\(.*$\)/Area
code: \1 Second: \2 Third: \3/‘ <Enter>

Area code: (555) Second: 555- Third: 1212

Area code: (555) Second: 555- Third: 1213

Area code: (555) Second: 555- Third: 1214

Area code: (666) Second: 555- Third: 1215

Area code: (666) Second: 555- Third: 1216

Area code: (777) Second: 555- Third: 1217

Hold Space

•  The “hold space” is a temporary space to put
things while you do other things, or look for the
other lines.

•  Lines in the hold space cannot be operated on, you
can only put things in the hold space and take
things out from it. (a.k.a. “accumulator”)

•  Any work you want to do on lines has to be done in
the pattern space.

Hold Space

•  The most common use of the hold space is to make
a duplicate of the current line while you change the
original in the pattern space.

Command Description of Command’s Function

H or h Overwrite (h) or append (H) the hold space with the contents of
the pattern buffer into the hold buffer.

G or g Overwrite (g) or append (G) the pattern space with the contents of
hold space.

x Exchange the pattern space and the hold space, note that this
command is not useful by itself.

Using Hold Space
mtrutschl@sun> cat /etc/passwd | sed -ne '2G' -e 'p'
root:x:0:0:root:/root:/bin/bash

bin:x:1:1:bin:/bin:/bin/bash

daemon:x:2:2:Daemon:/sbin:/bin/bash

lp:x:4:7:Printing daemon:/var/spool/lpd:/bin/bash

mail:x:8:12:Mailer daemon:/var/spool/clientmqueue:/bin/false

news:x:9:13:News system:/etc/news:/bin/bash

<CUT>

Common Sed Commands

Editing Commands Description of Command’s Function

Comment. If first two characters of a sed script are
#n, then the –n (no auto-print) option is forced

{ COMMANDS } A group of COMMANDS may be enclosed in curly
braces to be executed together. This is useful when
you have a group of commands that you want
executed on an address match.

D[address][,address2]d Deletes line(s) from pattern space

n If auto-print was not disabled (-n), print the pattern
space, and then replace the pattern space with the
next line of input. If there is no more input, sed exits.

Less Common Sed Commands

Command Usage

:label Label a line to reference later for transfer of control via b and
t commands.

a[address][,address2]a\text Append text after each line matched by address or address
range

b[address][,address2]]b[label]

Branch (transfer control unconditionally) to :label.

c[address][,address2]]\text Delete the line(s) matching address and then output the lines
of text that follow this command in place of the last line.

D[address][,address2]]D Delete first part of multiline pattern (created by N command)
space up to newline.

g Replace the contents of the pattern space with the contents
of the hold space

Less Common Sed Commands

Command Usage

G Add a newline to the end of the pattern space and then append
the contents of the hold space to that of the pattern space

h Replace the contents of the hold space with the contents of the
pattern space

H Add a newline to the end of the hold space and then append the
contents of the pattern space to the end of the pattern space.

i[address][,address2]\text Immediately output the lines of the text that follow this command;
the final line ends with an unprinted “\”.

1N Print the pattern space using N lines as the word-wrap length.
Nonprintable characters and the \ character are printed in C-style
escaped form. Long lines are split with a trailing “\” to indicate
the split; the end of each line is marked with “$”.

Less Common Sed Commands

Command Usage
P Add a newline to the pattern space and then append the next

line of input into the pattern space. If there is no more input, sed
exits

r[address][,address2]FILENAME Read in a line of FILENAME and insert it into the output stream
at the end of a cycle. If file name cannot be read, or end-of-line
is reached, no line is appended. Special file /dev/stdin can be
provided to read a line from the standard input.

w[address][,address2]FILENAME Write to FILENAME the pattern space. The special file names /
dev/stderr and /dev/stdout are available to GNU sed. The file is
created before the first line input line is read. All the w
commands that refer to the same FILENAME are output without
closing and reopening the file

x Exchange the contents of the hold and pattern space.

GNU sed-Specific sed Extensions

Editing Command Description of Command’s Function
e[COMMAND] Without parameters, executes the command found in pattern space,

replacing pattern space with its output. With the parameter COMMAND,
interprets COMMAND and sends output of command to output stream

LN Fills and joins lines in pattern space to produce output lines of N
characters (at most). This command will be removed in future releases.

Q[EXIT-CODE] Same as common q command, except that it does not print the pattern
space. It provides the ability to retuen an EXIT-CODE

R FILENAME Reads in a line of FILENAME, and inserts it into the output stream at the
end of a cycle. If file name cannot be read or eof is reached, no line is
appended. Special file /dev/stdin can be provided to read a line from
standard input.

T LABEL Branch to LABEL if there have been no successful substitution(s) since
last input line was read or branch taken. If LABEL is omitted, the next
cycle is started.

GNU sed-Specific sed Extensions

Editing Command Description of Command’s Function
v VERSION This command fails if GNU sed extensions are not supported. You can

specify the VERSION of GNU sed required; default is 4.0, as this is the
version that first supports this command

W FILENAME Write to FILENAME the pattern space up to the first newline. See
standard w command regarding the handles.

In-class lab (time permitting)

•  Page 227, exercises 1, 2, and 3

Questions/Comments?

 Presentation slides by:
 Dr. Marjan Trutschl and Vanessa Pacheco
 Copyright © 2006

 Contact information:
 marjan.trutschl@lsus.edu

